个人简介:
胡勇,2012年6月获得法国巴黎第十一大学博士学位;2012年9月至2013年8月在德国杜伊斯堡-埃森大学从事博士后研究。2013年9月起担任法国诺曼底卡昂大学 Maitre de conferences 教职 (法国的仅次于教授的终身教职)。2017年6月加入南方科技大学。主要科研方向为数论与算术几何。
工作经历:
2023.06- 副教授 南方科技大学 澳门太阳集团网站入口
2017.06-2023.05 助理教授, 南方科技大学 澳门太阳集团网站入口
2013.09-2017.06 副教授(Maitre de conference) 法国诺曼底卡昂(Caen Normandie)大学 澳门太阳集团网站入口
2012.09-2013.08 博士后 德国杜伊斯堡-埃森(Duisburg-Essen)大学 澳门太阳集团网站入口
教育背景:
2008.09-2012.06 巴黎第十一大学 澳门太阳集团网站入口 法国
2012年6月获博士学位
2007.09-2008.07 莱顿大学 澳门太阳集团网站入口 荷兰 (硕士二年级,欧盟Erasmus ALGANT联合培养项目)
2008年7月获硕士学位
2006.09-2007.07 巴黎第十一大学 澳门太阳集团网站入口 法国 (硕士一年级,欧盟Erasmus ALGANT联合培养项目)
2005.09-2006.07 清华大学 澳门太阳集团网站入口 北京 (直博一年级,因出国留学未获国内学位)
2001.09-2005.07 清华大学 澳门太阳集团网站入口 北京
2005年7月获理学学士学位
1. 主持 (PI):
Universal quadratic forms and Hilbert's seventeenth problem over semi-global fields
泛表示的二次型和半整体域上的 Hilbert 第十七问题
National Natural Science Foundation of China, Regular Program No. 12171223,
510,000 RMB yuan, Jan. 2022---Dec. 2025;
国家自然科学基金,面上项目,项目批准号 12171223,
51 万元, 起止年月:2022年1月---2025年12月;
2. 主持 (PI):
Chow groups and unramified cohomology of quadrics in characteristic 2
特征为 2 时二次超曲面的周群和非分歧上同调
Guangdong Basic and Applied Basic Research Foundation, Program No. 2021A1515010396
RMB 100 000 yuan, Jan. 2021---Dec. 2023.
广东省基础与应用基础研究基金,面上项目,项目编号 2021A1515010396
10 万元, 起止年月:2021年1月---2023年12月.
3. 主持 (PI):
Division algebras and arithmetic of quadratic forms over semi-global fields
半整体域上的可除代数和二次型相关算术问题
National Natural Science Foundation of China, Youth Program No. 11801260,
260,000 RMB yuan, Jan. 2019---Dec. 2021;
国家自然科学基金,青年科学基金项目,项目批准号 11801260,
26 万元, 起止年月:2019年1月---2021年12月;
4. 参与 (Participate):
Higher rank Kuznetsov formulas and applications
高秩 Kuznetsov 公式及其应用
National Natural Science Foundation of China, Program No. 11871261,
550,000 RMB yuan, Jan. 2019---Dec. 2022;
国家自然科学基金,面上项目,项目批准号 11871267,
55 万元, 起止年月:2019年1月---2022年12月;
Preprints
1. (with Ahmed Laghribi and Peng Sun) Chow Groups of Quadrics in Characteristic Two, preprint available at arXiv:2101.03001
2. (with Zilong He) Pythagoras number of quartic orders containing $\sqrt{2}$, preprint available at arXiv:2204.10468
Publications
1. (with Sunghan BAE and Linsheng YIN) Artin L-functions and modular forms associated to quasi-cyclotomic fields, Acta Arithmetic, 143 (2010), 59--80
2. Weak approximation over function fields of curves over large or finite fields, Math. Ann. 348 (2010) No. 2, 357–377.
3. Local-global principle for quadratic forms over fraction fields of two-dimensional henselian domains, Annales de l’Institut Fourier, 62 (2012) No. 6, 2131–2143.
4. Division algebras and quadratic forms over fraction fields of two-dimensional henselian domains, Algebra & Number Theory, 7 (2013) No. 8, 1919–1952.
5. Hasse principle for simply connected groups over function fields of surfaces, Journal of Ramanujan Mathematical Society, 29 (2014) No. 2, 155–199.
6. The Pythagoras number and the $u$-invariant of Laurent series fields in several variables, Journal of Algebra, 426 (2015), 243–258.
7. A cohomological Hasse principle over two-dimensional local rings, International Mathematics Research Notices, 14 (2017), 4369–4397.
8. Reduced norms of division algebras over complete discrete valuation fields of local-global type, Journal of Algebra and Its Applications, (2020) 2050217, 16pp
9. (with Zhengyao Wu) On the Rost divisibility of henselian discrete
valuation fields of cohomological dimension 3, Annals of K-theory, 5 (2020) No. 4, 677-707
10. (with Peng Sun) Unramified Cohomology of Quadrics in Characteristic Two, Manuscripta Mathematica, 171 (2023) No. 1-2, 263–294 .
11. (with Zilong He) On k-universal quadratic lattices over unramified dyadic local fields, Journal of Pure and Applied Algebra, 227 (2023) No.7, 107344, 32pp.
12. (with Zilong He and Fei Xu) On indefinite k-universal integral quadratic forms over number fields, Mathematische Zeitschrift, 304 (2023) , Article number 20, 26pp.
13. (with Zilong He) On $n$-universal quadratic forms over dyadic local fields, to appear in Science China. Mathematics, preprint available at arXiv:2204.01997
Preprints
1. (with Ahmed Laghribi and Peng Sun) Chow Groups of Quadrics in Characteristic Two, preprint available at arXiv:2101.03001
2. (with Zilong He) Pythagoras number of quartic orders containing $\sqrt{2}$, preprint available at arXiv:2204.10468
Publications
1. (with Sunghan BAE and Linsheng YIN) Artin L-functions and modular forms associated to quasi-cyclotomic fields, Acta Arithmetic, 143 (2010), 59--80
2. Weak approximation over function fields of curves over large or finite fields, Math. Ann. 348 (2010) No. 2, 357–377.
3. Local-global principle for quadratic forms over fraction fields of two-dimensional henselian domains, Annales de l’Institut Fourier, 62 (2012) No. 6, 2131–2143.
4. Division algebras and quadratic forms over fraction fields of two-dimensional henselian domains, Algebra & Number Theory, 7 (2013) No. 8, 1919–1952.
5. Hasse principle for simply connected groups over function fields of surfaces, Journal of Ramanujan Mathematical Society, 29 (2014) No. 2, 155–199.
6. The Pythagoras number and the $u$-invariant of Laurent series fields in several variables, Journal of Algebra, 426 (2015), 243–258.
7. A cohomological Hasse principle over two-dimensional local rings, International Mathematics Research Notices, 14 (2017), 4369–4397.
8. Reduced norms of division algebras over complete discrete valuation fields of local-global type, Journal of Algebra and Its Applications, (2020) 2050217, 16pp
9. (with Zhengyao Wu) On the Rost divisibility of henselian discrete
valuation fields of cohomological dimension 3, Annals of K-theory, 5 (2020) No. 4, 677-707
10. (with Peng Sun) Unramified Cohomology of Quadrics in Characteristic Two, Manuscripta Mathematica, 171 (2023) No. 1-2, 263–294 .
11. (with Zilong He) On k-universal quadratic lattices over unramified dyadic local fields, Journal of Pure and Applied Algebra, 227 (2023) No.7, 107344, 32pp.
12. (with Zilong He and Fei Xu) On indefinite k-universal integral quadratic forms over number fields, Mathematische Zeitschrift, 304 (2023) , Article number 20, 26pp.
13. (with Zilong He) On $n$-universal quadratic forms over dyadic local fields, to appear in Science China. Mathematics, preprint available at arXiv:2204.01997
澳门太阳集团网站入口微信公众号
Copyright © 2015 澳门太阳集团(9728·VIP网城)网站入口-欢迎您 All Rights Reserved. 粤ICP备14051456号
地址:广东省深圳市南山区学苑大道1088号 电话:+86-755-8801 0000 邮编:518055