Mar 10-12, 2017
会议指南
周边交通
学校地址:广东省深圳市南山区学苑大道1088 号
地铁:
5 号线塘朗站(塘朗地铁站D 出口出,步行约700 米到南方科技大学正门)
公交车:
站点名称:南方科技大学站
线路:43,74,81,m369,m459,
来校路线
以下是从几大客运枢纽来校的推荐路线:
1. 从深圳宝安机场
(i)公共交通:
地铁11号线:机场站 至 前海湾站 (共3站) 转
地铁5号线: 前海湾站 至 塘朗站 (共11站) 即到达。 耗时:约1小时。
(ii)打车
由 宝安机场 至 南方科技大学
约 30.2 公里,途径3个红绿灯,耗时约37分钟,价格约83元。
2. 从深圳北站
(i)公共交通:
地铁5号线: 深圳北站 至 塘朗站 (共2站) 即到达。 耗时:约15分钟
(ii)打车
由 深圳北站 至 南方科技大学
约 6.7 公里,途径1个红绿灯,耗时约10分钟,价格约23元。
3. 从罗湖口岸关口
(i)公共交通:
地铁需经历3次换乘,不甚方便,推荐打车。
(ii)打车
由 罗湖口岸 至 南方科技大学
约 21.4 公里,途径2个红绿灯,耗时约25分钟,价格约58元。
4. 从福田口岸关口
(i)公共交通:
地铁4号线:福田口岸站 至 深圳北站 (共9站) 转
地铁5号线: 深圳北站站 至 塘朗站 (共2站) 即到达。 耗时:约35分钟。
(ii)打车
由 福田口岸 至 南方科技大学
约 17.0 公里,途径8个红绿灯,耗时约27分钟,价格约47元。
校园地图
会 议 日 程
3月10日 (星期五)
会议报到 10:00-22:00 地点:南方科技大学专家公寓二栋
中餐 11:20-13:00 地点:南方科技大学教工餐厅
晚餐 17:20-19:00 地点:南方科技大学教工餐厅
——————————————————————————————————
3月11日上午 (星期六)
早餐: 07:00-08:00 地点:南方科技大学教工餐厅
开幕式 08:00-08:10 地点:南方科技大学科教服务中心706
主持人:田国梁 南方科技大学
——————————————————————————————————
邀请报告(1) 08:10-08:55 地点:南方科技大学科教服务中心706
主持人:田国梁 南方科技大学
报告人:艾明要 北京大学
报告题目:Design and analysis of experiments
——————————————————————————————————
邀请报告(2) 08:55-9:40 地点:南方科技大学科教服务中心706
主持人:田国梁 南方科技大学
报告人:刘民千 南开大学
报告题目:Nearly column-orthogonal designs based on leave-one-out good lattice point sets
——————————————————————————————————
茶歇: 09: 40-9:50
地点: 南方科技大学科教服务中心703
——————————————————————————————————
邀请报告(3) 09:50-10:35 地点:南方科技大学科教服务中心706
主持人:田国梁 南方科技大学
报告人:岳荣先 上海师范大学
报告题目:Optimal Population Designs with Longitudinal Data for Random Intercept Linear Model
——————————————————————————————————
邀请报告(4) 10:35-11:20 地点:南方科技大学科教服务中心706
主持人:田国梁 南方科技大学
报告人:覃 红 华中师范大学
报告题目:Two New Approaches of Constructing Uniform Designs
——————————————————————————————————
邀请报告(5) 11:20-12:05 地点:南方科技大学科教服务中心706
主持人:田国梁 南方科技大学
报告人:张崇岐 广州大学
报告题目:The Cox uniform design for mixture experiments
午餐: 12:10-13:30
地点: 南方科技大学专家公寓一栋二楼
——————————————————————————————————
3月11日下午
试验设计的理论及行业应用讨论会 2:30-5:30 地点:南方科技大学专家公寓
主持人: 田国梁 南方科技大学
——————————————————————————————————
3月12日
下午 代表离开南方科技大学
报告题目和摘要(按报告顺序)
邀请报告
报告题目:Design and Analysis of Experiments
报告人: 艾明要 北京大学
摘要:Design and analysis of experiments is an indispensable tool for experimenters and one of the core topics of Statistics. In this talk, we first briefly review main design and modeling methods applied in agricultural and industrial experiments, and then shift to computer experiments popular in high tech fields. The significant difference of computer experiments from the traditional experiments is discussed and the related design and modeling of these experiments is also investigated. Some general frameworks are proposed for constructing nested and sliced space-filling designs in computer experiments for more flexible parameters in which the whole design and each slice not only achieve maximum stratification in univariate margins, but also achieve stratification in two- or more-dimensional margins. Compared with other designs, the new constructed designs have better space-filling property.
邀请报告
报告题目:Nearly Column-orthogonal Designs based on Leave-one-out
Good Lattice Point Sets
报告人: 刘民千 南开大学
摘要:Good lattice point sets have desirable space-filling properties, and many designs with large L1-distance can be obtained by the leave-one-out good lattice point method (Zhou and Xu, 2015). However, there are negatively fully correlated columns in such a design. This is undesirable in the modeling of computer experiments. To overcome such a deficiency, we propose a class of designs based on the leave-one-out good lattice point method, whose columns can be divided into two groups, such that any two columns are column-orthogonal when they are from different groups and nearly column-orthogonal when they are in the same group. The new designs can also estimate the linear effects without being correlated with the second-order effects. Moreover, they have good stratification properties and their L1-distances are comparable with the corresponding designs in Zhou and Xu (2015).
邀请报告
报告题目:Optimal Population Designs with Longitudinal Data for Random Intercept Linear Models
报告人:岳荣先 上海师范大学
摘要:We consider optimal designs for linear regression model with a random intercept term for longitudinal data. The design space is assumed to be a set of equally spaced time points. Taking the sampling scheme for each subject as a multidimensional point in the space of admissible sampling sequence, we determine the optimal number and allocation of sampling times so as to accurately estimate the fixed effects of the model. The costs of a longitudinal study are taken into account when defining the D-optimality criterion. A hybrid algorithm is proposed to construct the optimal designs.
邀请报告
报告题目:Two New Approaches of Constructing Uniform Designs
报告人:覃 红 华中师范大学
摘要:In this talk, we will introduce two approaches to construct at least highly efficient two-level and mixed two- and four-level uniform designs, respectively. The efficiency is based on the viewpoint of uniformity measured by the wrap-around L2-discrepancies.
邀请报告
报告题目:The Cox Uniform Design for Mixture Experiments
报告人:张崇岐 广州大学
摘要:This talk proposes a new design that is Cox uniform design for mixture experiments. Using the Cox method, we transform the D-optimal design points in the simplex to uniform design points, and determine a uniform design by calculating the MSE deviation. We have proved the Cox uniform design can maintain the D- optimality in the transformed region. The model established in this work is more close to the real model and more robust.
通 讯 录
编号 |
姓名 |
工作单位 |
|
1 |
艾明要 |
北京大学 |
myai@math.pku.edu.cn |
2 |
刘民千 |
南开大学 |
|
3 |
岳荣先 |
上海师范大学 |
yue2@shnu.edu.cn |
4 |
覃 红 |
华中师范大学 |
qinhong@mail.ccnu.edu.cn |
5 |
张崇岐 |
广州大学 |
cqzhang@gzhu.edu.cn |
6 |
田国梁 |
南方科技大学 |
tiangl@sustc.edu.cn |
7 |
陈安岳 |
南方科技大学 |
chenay@sustc.edu.cn |
8 |
曹敏 |
南方科技大学 |
caom@sustc.edu.cn |
9 |
蒋学军 |
南方科技大学 |
jiangxj@sustc.edu.cn |
10 |
欧阳顺湘 |
南方科技大学 |
ouyangsx@sustc.edu.cn |
11 |
刘鹏懿 |
南方科技大学 |
liupy@mail.sustc.edu.cn |
12 |
陈汉 |
南方科技大学 |
chenh3@mail.sustc.edu.cn |
13 |
柯笑 |
南方科技大学 |
kex@mail.sustc.edu.cn |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|