Faculty > Teaching Professors > WANG Rong

WANG Rong

Associate Professor  

0755-88018780

  • Brief Biography
  • Research
  • Teaching
  • Published Works

Personal Homepage


Research Interests:

◆ Computational fluid dynamics

◆ Numerical partial differential equations

◆ Numerical software


Professional Experience:

◆ 2002.09—2004.08: Postdoc, Dalhousie University, Canada

◆ 2004.09—2008.06: Postdoc, University of Saskatchewan, Canada

◆ 2008.07—2013.08: Professor, Wuhan University, China

◆ 2013.09—present: Associated Professor, Southern University of Science and Technology


Educational Background:

◆ Ph.D, Dalhousie University, Canada, 2002

◆ M.Sc, Dalhousie University, Canada, 1999

◆ B.Sc, University of Science & Technology of China, 1996


Publications:

[1] A comparison of adaptive software for 1-D parabolic PDEs, Rong Wang*, Patrick Keast and Paul H. Muir, J. Comput. Appl. Math., Vol 169, 2004, pp. 127-150.

[2] A high-order global spatially adaptive collocation method for 1-D parabolic PDEs, Rong Wang*, Patrick Keast and Paul H. Muir, Appl. Numer. Math., Vol 50, 2004, pp. 239-260.

[3] BACOL: B-spline Adaptive COLlocation software for 1-D parabolic PDEs, Rong Wang*, Patrick Keast and Paul H. Muir, ACM Trans. Math. Softw., Vol 30, 2004, pp. 454-470.

[4] Linear instability of the fifth-order WENO method, Rong Wang and Raymond J. Spiteri*, SIAM J. Numer. Anal., Vol 45, 2007, pp. 1871-1901.

[5] Algorithm 874: BACOLR: Spatial and Temporal Error Control Software for PDEs based on High Order Adaptive Collocation, Rong Wang, Patrick Keast and Paul H. Muir*, ACM Trans. Math. Softw, Volume 34, Issue 3, 2008, Article 15.

[6] Observations on the fifth-order WENO method with non-uniform meshes, Rong Wang, Hui Feng, and Raymond J. Spiteri*, Appl. Math. Comput., Vol. 196, 2008, pp. 433-447.

[7] A New Mapped Weighted Essentially Non-oscillatory Scheme, Hui Feng, Fuxing Hu, and Rong Wang*, J. Sci. Comput., Vol 51, 2012, pp. 449--473.

[8] An improved mapped weighted essentially non-oscillatory scheme, Hui Feng, Cong Huang, and Rong Wang*, Appl. Math. Comput.,Vol 232, 2014, pp. 453-468.

[9] A new family of mapped weighted essentially non-oscillatory method using rational mapping functions, Rong Wang*, Hui Feng and Cong Huang, J. Sci. Comput., to appear.

[10] An adaptive mesh method for 1D hyperbolic conservation Laws, Fuxing Hu*, Rong Wang, Xueyong Chen, and Hui Feng, Appl. Numer. Math.,Vol 91,2015,pp. 11-25.