Abstract
In this talk, we present some recent progresses in random bath molecular dynamics. We first discuss the sum-of-exponentials (SOE) and sum-of-Gaussians (SOG) approximations of kernel functions, and present a novel de la Vallée-Poussin and model reduction method for constructing kernel independent SOE and SOG. A random-batch SOG method is then present for long-range interactions in molecular dynamics, where the far part of the SOG series is solved in the Fourier space with the random-batch importance sampling. Finally, we introduce our recent work on symmetric preserving and energy stable time integration for molecular dynamics with stochastic forces. Numerical results are present to demonstrate the performance of the algorithms.
个人简介
徐振礼上海交通大学教授。中国科学技术大学本硕博,曾任美国北卡罗莱纳大学夏洛特分校博士后、德国斯图加特大学洪堡学者。2010年任上海交通大学特别研究员,2016年晋升正教授,2019-2021年任数学学院副院长,2021年起任教务处副处长。2010年入选新世纪优秀人才计划,2012年中组部青年拔尖人才计划,2023年获国家自然科学基金杰出青年基金。担任AAMM、CMS和MCA等杂志编委。曾获上海市和国家级教学成果奖,上海交通大学十大科技进展等。研究方向为快速算法和高性能计算、分子动力学算法和偏微分方程的数值方法等,发表80多篇研究论文。