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THE FUNDAMENTAL VARIATIONAL PRINCIPLE

Namely, because the shape of the whole universe is the

most perfect and, in fact, designed by the wisest creator,

nothing in all the world will occur in which no maximum or

minimum rule is somehow shining forth...

Leonhard Euler (1744)
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INTRINSIC NONSMOOTHNESS

is typically encountered in applications of modern variational
principles and techniques to numerous problems arising in pure
and applied mathematics particularly in analysis, geometry, dy-
namical systems (ODE,PDE), optimization, equilibrium, mechan-
ics, control, economics, ecology, biology, computers science...

REMARKABLE CLASSES OF NONSMOOTH FUNCTIONS

MARGINAL/VALUE FUNCTIONS

µ(x) := inf
{
ϕ(x, y)

∣∣∣ y ∈ G(x)
}

crucial in perturbation and sensitivity analysis, stability, and many
other issues. In particular, DISTANCE FUNCTIONS

dist(x; Ω) := inf
{
‖x− y‖

∣∣∣ y ∈ Ω
}

or generally ρ(x, z) := dist(x;F (z))

naturally appear via variational principles and penalization
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INTRINSIC NONSMOOTHNESS (cont.)

MAXIMUM FUNCTIONS

f(x) = max
u∈U

g(x, u),

in particular, HAMILTONIANS in physics, mechanics, calculus
of variations, systems control, variational inequalities, etc.

NONSMOOTH/NONCONVEX SETS AND MAPPINGS

Parametric sets of feasible and optimal solutions in various
problems of equilibrium, optimization, dynamics
Preference and production sets in economic modeling
Reachable sets in dynamical and control systems
Sets of Equilibria and Equilibrium Constraints in physical,
mechanical, economic, ecological, and biological models
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SUBDIFFERENTIALS

of ϕ : IRn → R := (−∞,∞] with ϕ(x̄) <∞ should satisfy:

1) for convex functions ϕ reduces to

∂•ϕ(x̄) =
{
v
∣∣∣ ϕ(x)− ϕ(x̄) ≥ 〈v, x− x̄〉 for all x ∈ IRn

}
2) If x̄ is a local minimizer for ϕ, then 0 ∈ ∂•ϕ(x̄)

3) Sum Rule (Basic Calculus)

∂•(ϕ1 + ϕ2)(x̄) ⊂ ∂•ϕ1(x̄) + ∂•ϕ2(x̄)

4) Robustness

∂•ϕ(x̄) =
{
v ∈ IRn

∣∣∣∣ ∃xk → x̄, vk → v, ϕ(xk)→ ϕ(x̄),

s.t. vk ∈ ∂•ϕ(xk), k = 1,2, . . .
}
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THE BASIC SUBDIFFERENTIAL

of ϕ : IRn → IR at x̄ is defined by the outer limit

∂ϕ(x̄) =
{
v ∈ IRn

∣∣∣∣ ∃xk → x̄, vk → v, ϕ(xk)→ ϕ(x̄),

s.t. vk ∈ ∂̂ϕ(xk), k = 1,2, . . .
}

where regular/viscosity subdifferential of ϕ at x is defined by

∂̂ϕ(x) :=
{
v

∣∣∣∣ lim inf
u→x

ϕ(u)− ϕ(x)− 〈v, u− x〉
‖u− x‖

≥ 0
}

The basic subdifferential is minimal among all subdifferentials

satisfying 1)-4), nonempty

∂ϕ(x̄) 6= ∅ for Lipschitz functions

5



while often nonconvex, e.g., ∂(−|x|)(0) = {−1,1}. Moreover, its

convexification, made for convenience, can dramatically worsen

the basic properties and applications



VARIATIONAL GEOMETRY

The (basic, limiting) NORMAL CONE N(x̄; Ω) := ∂δ(x̄; Ω) to

Ω at x̄ ∈ Ω, where δ(x; Ω) := 0 for x ∈ Ω and δ(x; Ω) := ∞ for

x /∈ Ω. It can be equivalently described as

N(x̄; Ω) =
{
v ∈ IRn

∣∣∣∣ ∃xk → x̄, αk ≥ 0, wk ∈ Π(xk; Ω)

s.t. αk(xk − vk)→ v as k →∞
}
,

where Π(x; Ω) is the Euclidean projector of the set Ω, i.e.,

Π(x; Ω) :=
{
y ∈ Ω

∣∣∣∣ ‖y − x‖ = min
u∈Ω
‖u− x‖

}
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EXTREMALITY OF SET SYSTEMS

DEFINITION. A vector x̄ ∈ Ω1∩Ω2 is a LOCAL EXTREMAL

POINT of the system of closed sets {Ω1,Ω2} in IRn if there

exists a neighborhood U of x̄ such that for any ε > 0 there is

a ∈ IRn with ‖a‖ < ε satisfying

(Ω1 + a) ∩Ω2 ∩ U = ∅

EXAMPLES:

—boundary point of closed sets

—local solutions to constrained optimization, multiobjective op-

timization, and other optimization-related problems

—minimax solutions and equilibrium points

—Pareto-type allocations in economics

—stationary points in mechanical and ecological models, etc.
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EXTREMAL PRINCIPLE

THEOREM. Let x̄ be a LOCAL EXTREMAL POINT for

the system of closed sets {Ω1,Ω2} in IRn.Then there exists a

dual element 0 6= v ∈ IRn such that

v ∈ N(x̄; Ω1) ∩ (−N(x̄; Ω2))

This is a VARIATIONAL counterpart of the separation theo-

rem for the case of nonconvex sets, which plays a fundamental

role in variational analysis and its applications.

SOME APPLICATIONS: Full Calculus of Generalized Differ-

entiation; Well-Posedness in Optimization and Optimality Con-

ditions; Sensitivity Analysis, ODE and PDE Control, Economic

and Mechanical Equilibria, Numerical Analysis...
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MATHEMATICAL PROGRAMMING

Consider the nonsmooth NP problem:

minimize ϕ0(x) subject to ϕi(x) ≤ 0, i = 1, . . . ,m
ϕi(x) = 0, i = m+ 1, . . . ,m+ r
x ∈ Ω

THEOREM (generalized Lagrange multipliers). Let ϕi be lo-

cally Lipschitzian and Ω be locally closed around an optimal

solution x̄. Then there are (λ0, . . . , λm+r) 6= 0 satisfying

λi ≥ 0, i = 0, . . . ,m, λiϕi(x̄) = 0, i = 1, . . . ,m,

0 ∈ ∂
(m+r∑
i=0

λiϕi

)
(x̄) +N(x̄; Ω)

Moreover, λ0 6= 0 (Normality) under appropriate Constraint

Qualification Conditions
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DYNAMICAL SYSTEMS

governed by differential inclusions

ẋ(t) ∈ F (x(t), t), t ∈ [a, b], x(a) = x0 ∈ IRn

where ẋ stands for the time derivative and where F : IRn× [a, b]⇒
IRn is a set-valued mapping. This description is important for

qualitative theory of dynamical system and numerous applica-

tions, e.g., to various economic, ecological, biological, financial

systems, climate research...

In particular, this covers parameterized control systems with

ẋ = g(x, u, t), u(·) ∈ U(x, t)

where the control region U(x, t) depends on time and state
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DISCRETE APPROXIMATIONS

Euler’s finite difference (for simplicity)

ẋ(t) ≈
x(t+ h)− x(t)

h
, h→ 0

Consider the mesh as N →∞

tj := a+ jhN , j = 0, . . . , N, t0 = a, tN = b, hN = (b− a)/N

Discrete Inclusions

xN(tj+1) ∈ xN(tj) + hNF (xN(tj), tj)

with piecewise linear Euler broken lines

Various Well-Posedness, Convergence, and Stability Issues
of Numerical and Qualitative Analysis in Finite-Dimensional
and Infinite-Dimensional Spaces
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OPTIMAL CONTROL OF DIFFERENTIAL INCLUSIONS

minimize the cost functional

J[x] = ϕ
(
x(b)

)
subject to

ẋ(t) ∈ F (x(t), t) a.e. t ∈ [a, b], x(a) = x0

x(b) ∈ Ω ⊂ IRn

where F : IRn ⇒ IRn is a Lipschitz continuous set-valued mapping,

Ω is a closed set, ϕ is a l.s.c. function

This covers various open-loop and closed-loop control systems

with ODE dynamics and hard control and state constraints
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CODERIVATIVES OF MAPPINGS

Let F : X ⇒ Y be a set-valued mapping with (x̄, ȳ) ∈ gphF . Then
D∗F (x̄, ȳ): Y ∗ ⇒ X∗ defined by

D∗F (x̄, ȳ)(y∗) :=
{
x∗
∣∣∣ (x∗,−y∗) ∈ N((x̄, ȳ); gphF )

}
is called the coderivative of F at (x̄, ȳ).

If F : X → Y is smooth around x̄ , then

D∗F (x̄)(y∗) =
{
∇F (x̄)∗y∗

}
for all y∗ ∈ Y ∗

i.e., the coderivative is a proper generalization of the classical
adjoint derivative. If F : X → Y is single-valued and locally Lips-
chitzian around x̄, then the scalarization formula holds:

D∗F (x̄)(y∗) = ∂〈y∗, F 〉(x̄)

ENJOY FULL CALCULUS!
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CHARACTERIZATION OF WELL-POSEDNESS

F : X ⇒ Y is called Lipschitz-like around (x̄, ȳ) ∈ gphF if there

are neighborhood U of x̄, V of ȳ and modulus ` ≥ 0 for which

we have the inclusion

F (x) ∩ V ⊂ F (u) + `‖x− u‖IB for all x, u ∈ U

THEOREM. F is Lipschitz-like around (x̄, ȳ) if and only if

D∗F (x̄, ȳ)(0) = {0}

The exact bound of Lipschitz moduli ` is calculated by

lipF (x̄, ȳ) = ‖D∗F (x̄, ȳ)‖
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EXTENDED EULER-LAGRANGE+MAXIMUM PRINCIPLE

THEOREM. Let x̄(·) be an optimal solution to the control

problem. Then one has

Euler-Lagrange inclusion

ṗ(t) ∈ coD∗F
(
x̄(t), ẋ(t)

)(
− p(t)

)
a.e.,

Weierstrass-Pontryagin maximum condition condition〈
p(t), ˙̄x(t)

〉
= max

v∈F (x̄(t))

〈
p(t), v

〉
a.e.

transversality condition

−p(b) ∈ λ∂ϕ
(
x̄(b)

)
+N

(
x̄(b); Ω

)
with nontriviality condition

(
λ, p(·)

)
6= 0.

PROOF: DISCRETE APPROXIMATIONS
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HAMILTONIAN CONDITION

THEOREM. Let the sets F (x) ⊂ IRn be convex. Then the

extended Euler-Lagrange inclusion is equivalent to the extended

Hamiltonian inclusion

ṗ(t) ∈ co
{
u

∣∣∣∣ (− u, ẋ(t)
)
∈ ∂H

(
x̄(t), p(t)

)}
a.e.

in terms of the basic subdifferential of the (true) Hamiltonian

H(x, p, t) := sup
{〈
p, v

〉∣∣∣ v ∈ F (x, t)
}

which is intrinsically nonsmooth
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SEMILINEAR EVOLUTION INCLUSIONS AND PDEs

minimize J[x] := ϕ(x(b)) subject to

mild solutions to the semilinear evolution inclusion

ẋ(t) ∈ Ax(t) + F (x(t), t), x(a) = x0

with the endpoint constraints

x(b) ∈ Ω ⊂ X

where A is an unbounded generator of the C0 semigroup, i.e.

x(t) = eA(t−a)x0 +
∫ t
a
eA(t−s)v(s) ds, t ∈ [a, b]

v(t) ∈ F (x(t), t), t ∈ [a, b]

in the sense of Bochner integration.

Cover PDE systems with parabolic and hyperbolic dynamics
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CONTROLLED SWEEPING PROCESS

described by: minimize

J[x] := ϕ(x(T )) +
∫ T

0
f(x(t), ẋ(t)) dt s.t.

ẋ(t) ∈ −N(x(t);C(t)), t ∈ [0, T ], x(0) = x0

with the controlled moving set

C(t) = {x ∈ IRn| 〈u(t), x〉 ≤ b(t)}, ‖u(t)‖ = 1

Shape optimization governed by discontinuous differential inclu-

sions. The method of discrete approximations does the job
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