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Classical Perspective on “Problems” and “Solutions”

Problems modeled by equations — here finite-dimensional

for differentiable F : IRn → IRn, find x̄ such that F (x̄) = 0

optimization? ⊃ the case where F is a gradient mapping

Error analysis: issues important to computation
when F (x̄) = 0 but a known x has F (x) = v ̸= 0, can
the distance of x from x̄ be estimated from size of v?

Solution mappings — capturing dependence on parameters

for F : IRd × IRn → IRn, let S(p) =
{
x
∣∣F (p, x) = 0

}
• S is set-valued, but may have a “single-valued localization”

• the workhorse there is the standard implicit function theorem

• error analysis ←→ the case of S(v) =
{
x
∣∣F (x)− v = 0

}



New Perspective That Welcomes Set-Valuedness

aimed at solving optimality conditions and much more

Problems modeled by “inequations”

for set-valued M : IRn →→ IRn, find x̄ such that M(x̄) ∋ 0, i.e.,

x̄ ∈ M−1(0) for the inverse mapping M−1 : IRn →→ IRn

optimization? ⊃ the case where M is a subgradient mapping

Error analysis: if x has M(x) ∋ v ̸= 0, can the size of v yield an
estimate of the distance of x from the solution set M−1(0)?

Solution mappings at this level of generality

for M : IRd × IRn →→ IRn, let S(p) =
{
x
∣∣M(p, x) ∋ 0

}
• how “stable” is a solution x̄ ∈ S(p̄) when p̄ shifts to p?
• can a version of the implicit function theorem provide help?



Direct Examples in Optimization

Solving basic subgradient conditions

for lsc proper f on IRn find x̄ such that 0 ∈ ∂f (x̄)
aimed at identifying a local minimum of f

Associated “basic” solution mapping: S(v) =
{
x
∣∣ v ∈ ∂f (x)

}
= the solution set to condition for minimizing f (x)− v ·x in x

v = “tilt” perturbation, to be studied around v = 0

Solving optimality conditions involving dual variables

for f on IRn × IRm find x̄ , ȳ , such that (0, ȳ) ∈ ∂f (x̄ , 0)

aimed at local solutions to minimizing f (x , u) subject to u = 0

Associated “primal-dual” solution mapping:

S(v , u) =
{
(x , y)

∣∣ (v , y) ∈ ∂f (x , u)
}

around (v , u) = (0, 0)



A Key Problem Model in This Set-Valued Extension

Solving a “generalized equation”

find x̄ such that M(x̄) ∋ 0 in the case of M(x) = F (x) + N(x)

equivalently, find x̄ such that −F (x̄) ∈ N(x̄)

where F : IRn → IRn is C1 and N : IRn →→ IRn has closed graph

Parametric version: F (p, x), but N kept fixed
solution mapping: S(p) =

{
x
∣∣ − F (p, x) ∈ N(x)

}
Immediate examples: of what this formulations covers

• solve F (x̄) = 0 (classical equation): where N(x) ≡ {0}
• solve −∇f0(x̄) ∈ NC (x̄) (optimization): G = ∇f0, N = NC

NC (x) = normal cone if x ∈ C , but NC (x) = ∅ if x /∈ C



The “Variational Inequality” Case

Variational inequality problem — geometric type

solve −F (x̄) ∈ NC (x̄) in the case of a closed convex set C

Why “inequality”? because for a convex set C ,
v ∈ NC (x̄) ⇐⇒ x̄ ∈ C and v ·(x − x̄) ≤ 0 for all x ∈ C

−F (x̄) ∈ NC (x̄) ⇐⇒ x̄ ∈ C and F (x̄)·(x − x̄) ≥ 0, ∀x ∈ C

Variational inequality problem — general type

solve −F (x̄) ∈ ∂φ(x̄) in the case of φ lsc proper convex, i.e.,

find x̄ such that φ(x) ≥ φ(x̄)− F (x̄)·(x − x̄) for all x

the “geometric” type has φ = δC , so that ∂φ = NC



Optimization V.I. Example With Lagrangian Format

Constraints in local optimality: specializing −∇f0(x̄) ∈ NC (x̄)

minimize f0(x) over C =
{
x
∣∣ (f1(x), . . . , fm(x)) ∈ D

}
∩ X

for C1 functions fi , a convex set X , and a convex cone D

Normal cone formula: via earlier calculus, under constraint qual.
−∇f0(x̄) ∈ NC (x̄) ⇐⇒ ∃ ȳ ∈ ND(ū) for ū = (f1(x̄), . . . , fm(x̄))

such that −∇f0(x̄) ∈ NX (x̄) + ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄),
where ȳ ∈ ND(ū)⇐⇒ ū ∈ NY (ȳ) for the polar cone Y = D∗

Lagrangian translation — with L(x , y) = f0(x) +
∑m

i=1 yi fi (x)

−∇xL(x̄ , ȳ) ∈ NX (x̄), ∇yL(x̄ , ȳ) ∈ NY (ȳ), or equivalently,

−F (x , y) ∈ NX×Y (x̄ , ȳ) for F (x , y) = (∇xL(x , y),−∇yL(x , y))
a variational inequality model of geometric type

Parameterization: functions fi (x , p), but X and D kept fixed
−∇f0(x̄) ∈ NC (p)(x̄) is reduced to −F (p, x , y) ∈ NX×Y (x , y)



Implicit and Inverse Function Theorems — Background

Equation problem: when F (p̄, x̄) = 0 for F : IRd × IRn → IRn

determine if, ∀ p near p̄, ∃ unique x near x̄ solving F (p, x) = 0
−→ implicit function s such that F (p, s(p)) = 0

Inverse problem: when G (x̄) = v̄ for G : IRn → IRn

determine if, ∀ v near v̄ , ∃ unique x near x̄ solving G (x) = v
−→ inverse function t such that G (t(v)) = v

observation: “inverse” ⊂ “implicit” via F (v , x) = G (x)− v

Standard implicit function theorem — insightful formulation

The equation problem with F in C1 has YES answer if, for

G (x) = F (p̄, x̄) +∇xF (p̄, x̄)(x − x̄) linearizing F (p̄, ·) at x̄ ,
the inverse problem for G with v̄ = 0 has YES answer

moreover the implicit function s is then C1 etc.

Companion fact: the linearized inverse problem has YES answer
⇐⇒ the Jacobian ∇xF (p̄, x̄) has full rank n



Localizations of Solution Mappings

on the way to extending from equations to generalized equations
x̄ ∈ S(p̄) for a mapping S : IRd →→ IRn with closed graph

Single-valued localization of S around (p̄, x̄) ∈ gphS

a single-valued mapping s obtained locally around p̄ by taking
gph s = [Q × U] ∩ gphS for a neighborhood Q × U of (p̄, x̄)

Classical focus: differentiable s, formula for Jacobian ∇s(p̄)
New focus: Lipschitz continous s, estimate of modulus lip s(p̄)

lip s(p̄) := inf
{
λ
∣∣∣ |s(p)− s(p′)| ≤ λ|p − p′| for p, p′, near p̄

}
differentiability not natural for optimization-oriented analysis



Implicit Function Theorem for Generalized Equations

Generalized equation framework: with F in C1, closed graph S
mapping S(p) =

{
x
∣∣ − F (p, x) ∈ N(x)

}
with x̄ ∈ S(p̄)

focus: a possible single-valued localization s with s(p̄) = x̄

Auxiliary inverse framework: G = linearization of F (p̄, ·) at x̄
mapping T (v) =

{
x
∣∣ v − G (x) ∈ N(x)

}
, having x̄ ∈ T (0)

focus: a possible single-valued localization t with t(0) = x̄

Robinson’s Theorem — main version

S has a Lipschitz continuous single-valued localization s when
T has a Lipschitz continuous single-valued localization t,

and then lip s(p̄) ≤ lip t(0)·||∇pF (x̄ , p̄)||

Left for particular situations: verifying the assumption on T

other versions of this result drop differentiability and
utilize other “approximations” of F than “linearization”



Lipschitz-like Properties of Set-Valued Mappings

Notation: IB = closed unit ball,
C + εIB = set of all x at distance ≤ ε from C

Aubin property: of S : IRd →→ IRn at (p̄, x̄) ∈ gphS

∃ neighborhoods Q of p̄, U of x̄ , and λ ≥ 0 such that

S(p) ∩ U ⊂ S(p′) + λ|p − p′|IB for p, p′ ∈ Q

lipS(p̄ | x̄) := inf of λ for which this can hold locally

Calmness property: of S : IRd →→ IRn at (p̄, x̄) ∈ gphS

∃ neighborhoods Q of p̄, U of x̄ , and λ ≥ 0 such that

S(p) ∩ U ⊂ S(p̄) + λ|p − p̄|IB for p ∈ Q

clm S(p̄ | x̄) := inf of λ for which this can hold locally

Corresponding implicit function theorems — same pattern!

S has the property if T has it, and then get estimate



Error Analysis in Terms of Metric Regularity

Orientation: with any M : IRn →→ IRm having closed graph

• interested in solving M(x̄) ∋ 0, solution set = M−1(0)
• computations encounter x merely “close” to being a solution

solution error: dist(x ,M−1(0)) desired knowledge
residual error: dist(0,M(x)) accessible knowledge

Metric regularity — at a solution x̄ in M−1(0)

∃ neighborhoods U of x̄ , V of 0, and κ ≥ 0 such that

dist(x ,M−1(v)) ≤ κdist(v ,M(x)) for x ∈ U, v ∈ V

regM(x̄ |0) := inf of κ for which this can hold locally

Metric subregularity — at a solution x̄ in M−1(0)

∃ neighborhood U of x̄ and κ ≥ 0 such that

dist(x ,M−1(0)) ≤ κdist(0,M(x)) for x ∈ U

subregM(x̄ |0) := inf of κ for which this can hold locally



Connection with Inverse Mapping Theorems

Orientation: with M : IRn →→ IRm having closed graph

• interpret M−1 as the solution mapping S for M(x)− v ∋ 0
• bring in the Lipschitz-like properties for such a mapping S

Inverse characterization of metric regularity

M is metrically regular at x̄ ∈ M−1(0) ⇐⇒
M−1 has the Aubin property at (0, x̄) ∈ gphM−1,

and then regM(x̄ |0) = 1/ lipM−1(0 | x̄)

Inverse characterization of metric subregularity

M is metrically subregular at x̄ ∈ M−1(0) ⇐⇒
M−1 has the calmness property at (0, x̄) ∈ gphM−1,

and then subregM(x̄ |0) = 1/ clmM−1(0 | x̄)

Consequence: in general equation-type cases where M = F + N,
criteria can be derived from the extended implicit function theory



Tilt Stability in Local Optimality

Background problem: “locally” minimize lsc proper f on IRn

candidates for local min: points x̄ having 0 ∈ ∂f (x̄)
approximate candidates: x having v ∈ ∂f (x) for v near 0

Error analysis framework: with solution mapping S : IRn →→ IRn

S(v) =
{
x
∣∣ v ∈ ∂f (x)

}
= (∂f )−1(v), around (0, x̄) ∈ gphS

−→ look at metric regularity, relate to sufficiency for local min

Tilt stability: with respect to x̄ being a local minimizer of f

∃ neighborhoods V of 0 and U of x̄ such that the mapping
V ∋ v 7→ argmin

x∈U

{
f (x)− v ·(x − x̄)

}
is single-valued Lip. contin.

tilting term

Tilt stability versus metric regularity

tilt stability holds at x̄ ⇐⇒ ∂f is metrically regular at x̄ for 0
⇐⇒ ∂f strongly monotone locally around (x̄ , 0)



Local Monotonicity of Subgradient Mappings

what is the strong local monotonicity that’s tied to tilt stability?

Local monotonicity: of ∂f around (x̄ , 0) ∈ gph ∂f
∃U × V neighborhood∗ of (x̄ , 0) such that

(x1 − x0)·(v1 − v0) ≥ 0 ∀(x0, v0), (x1, v1) ∈ [U × V ] ∩ gph ∂f

strong: (x1 − x0)·(v1 − v0) ≥ σ|x1 − x0|2, σ > 0

Recall global monotonicity — the case of U × V = IRn × IRn

monotonicity ⇐⇒ convexity of f , and moreover
strong monotonicity ⇐⇒ strong convexity of f

maybe this also extends to “local ←→ local”? no!

Variational convexity: a property of f that has been shown to
characterize the local monotonicity of ∂f (and a strong version)

̸=⇒ f locally convex!

this is valuable in advancing the theory of local optimality



Further Study

• Lipschitzian properties of single-valued and set-valued
mappings are treated in detail in Chapter 9 of Variational Analysis,
where metric regularity also makes an appearance. However, the
main source for results behing this lecture is the my later book with
Asen Dontchev, Implicit Functions and Solution Mappings.

• For more on tilt stability and local monotonicity of subgradient
mappings, which get into variational convexity, sources beyond
those books will need to be consulted. The best way to begin is
with articles #252 and #256 on my website. This topic is closely
connected with ongoing research into second-order aspects of local
optimality and how it can serve in guiding numerical methodology.

website: sites.math.washington.edu/∼rtr/mypage.html



And a New Book That Can Help

An Optimization Primer

J.O. Royset and Roger J-B Wets

Springer Series in O. R. and Financial Engineering

available January 2022


