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Classical Geometric Perspective on Differentiation

Tangent space: TG (x̄ , f (x̄)) = hyperplane giving the graph of
the directional derivative function: w 7→ ∇f (x)·w

Normal space: NG (x̄ , f (x̄)) = the one-dim. subspace ⊥ to that

Local linearization: f ≈ l , where l(x) = f (x̄) +∇f (x̄)·(x − x̄)

f (x) = f (x̄) +∇f (x̄)·(x − x̄) + o(||x − x̄ ||)

Insight

∇f (x̄) is the unique v such that (v ,−1) ∈ NG (x̄ , f (x̄))



The Geometric Perspective in Convex Analysis

tangents and normals to epigraphs that are convex sets

Subderivatives: TE (x̄ , f (x̄)) = directional derivative epigraph

Subgradients: (v ,−1) ∈ NE (x̄ , f (x̄)) ⇐⇒ v ∈ ∂f (x̄)

f (x) ≥ f (x̄) + v ·(x − x̄) for all x

(v , 0) normal to epigraph ⇐⇒ v normal to the convex domain



The Geometric Perspective of Variational Analysis

variational geometry of epigraphs that are just closed sets

Notation: for a function f : IRn → IR = [−∞,∞]

epi f =
{
(x , α ∈ IRn × IR

∣∣ f (x) <∞}
epigraph

dom f =
{
x ∈ IRn

∣∣ f (x) <∞}
effective domain

epi f

f
α

n
dom f

lev f_α<

IR

IR

epi f is a closed set ⇐⇒
f is lower semicontinuous (lsc)

Properness: f is called proper when
∀x , f (x) > −∞, and ∃ x with f (x) <∞

i.e., epi f and dom f are ̸= ∅ and epi f contains no vertical lines



Main Features of This “Geometric Calculus” Approach

relying on tangent and normal vectors to epigraphs

• subderivatives are associated with tangent cones to epi f

• subgradients are associated with normal cones to epi f

• regular and general tangent and normal cones yield different
kinds of subderivatives and subgradients

• the regular and general kinds coincide wherever the epi f is
variational regular (= the variational regularity of f there)

• horizontal normals to epi f furnish horizon subgradients,
which might not just be normals to dom f

• horizon subgradients support rules of subdifferential calculus



Subderivatives in General

consider proper lsc f on IRn and x̄ ∈ dom f

Definition: [general] subderivative of f at x̄ for a vector w ∈ IRn

df (x̄)(w) = lim inf
w ′→w
τ ↘ 0

f (x̄ + τw ′)− f (x̄)

τ
df (x̄) : w 7→ df (x̄)(w)

epigraph of df (x̄) = the tangent cone to epi f at (x̄ , f (x̄))

(0,0)

f

f

_
epi df(x)

(x,f(x))
_ _

epi f
T (x,f(x))

_ _

x
_

Regular subderivatives: d̂ f (x̄), epigraph= regular tangent cone



Subgradient Definitions

Regular subgradients: v ∈ ∂̂f (x̄)

f (x) ≥ f (x̄) + v ·(x − x̄) + o(||x − x̄ ||) classical error term

General subgradients: v ∈ ∂f (x̄)
for some xν → x̄ with f (xν)→ f (x̄), ∃ vν ∈ ∂̂f (xν) with vν → v

the need for f (xν)→ f (x̄):
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Horizon subgradients: v ∈ ∂∞f (x̄)
for some xν → x̄ with f (xν)→ f (x̄),

∃ vν ∈ ∂̂f (xν) and λν ↘ 0, with λνvν → v



Normal Cone Characterizations of Subgradients

Descriptions in terms of E = epi f

v ∈ ∂̂f (x̄) ⇐⇒ (v ,−1) ∈ N̂E (x̄ , f (x̄))
v ∈ ∂f (x̄) ⇐⇒ (v ,−1) ∈ NE (x̄ , f (x̄))
v ∈ ∂∞f (x̄) ⇐⇒ (v , 0) ∈ NE (x̄ , f (x̄))

E = epi f
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v
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Connections With Lipschitz Continuity

Recall: f is locally Lipschitz continuous around x̄ ⇐⇒
∃κ ≥ 0 such that |f (x ′)− f (x)| ≤ κ|x ′ − x | for x , x ′ near x̄

Horizon subgradient criterion for Lipschitz continuity

f is (finite and) Lipschitz continuous on a neighborhood of x̄

⇐⇒ the only horizon subgradient v ∈ ∂∞f (x̄) is v = 0

⇐⇒ the subgradient set ∂f (x̄) is nonempty and bounded

Regular subderivatives then: for f Lip. continuous around x̄

d̂ f (x̄)(w) = lim sup
x ′→x̄ , τ ↘ 0

f (x ′ + τw)− f (x ′)

τ

= the Clarke directional derivative function, convex!

Contrast then to: df (x̄)(w) = lim inf
τ ↘ 0

f (x̄ + τw)− f (x̄)

τ



Benefits of Variational Regularity

Equivalent properties when f is locally Lipschitz continuous

f is variationally regular at x̄ i.e., E = epi f is, at (x̄ , f (x̄))

⇐⇒ every subgradient v ∈ ∂f (x̄) is regular: v ∈ ∂̂f (x̄)

⇐⇒ df (x̄)(w) = d̂ f (x̄)(w) = lim
τ ↘ 0

f (x̄ + τw)− f (x̄)

τ
= f ′(x̄ ;w)

=⇒ f (x̄ + w) = f (x̄) + df (x̄)(w) + o(|w |)

Subderivative-subgradient duality — in this especially nice case

df (x̄)(w) = max
{
v ·w

∣∣ v ∈ ∂f (x̄)
}

finite convex function

∂f (x̄) =
{
v
∣∣ df (x̄)(w) ≥ v ·w , ∀w

}
compact convex set

Comparison with classical formula: f ′(x̄ ;w) = ∇f (x̄)·w
∂f (x̄) = singleton {∇f (x̄)} ←→ f “strictly” differentiable at x̄



Reconnection With Sets Through Indicator Functions

Specialization to indicators: δC(x) =

{
0 if x ∈ C ,
∞ if x /∈ C

C closed ⇐⇒ δC is lsc, C convex ⇐⇒ δC is convex

Indicator characterization of tangents and normals

∂δC (x̄) = ∂∞δC (x̄) = NC (x̄), ∂̂δC (x̄) = N̂C (x̄)

dδC (x̄) = indicator of TC (x̄), d̂δC (x̄) = indicator of T̂C (x̄)

regularity of δC at x̄ ←→ regularity of C at x̄

Note: up to now, NC (x) has only had meaning for x ∈ C , but by
by taking NC (x) = ∅ for x /∈ C to define NC : IRn →→ IRn, we get

NC (x) = ∂δC (x) for all x ∈ IRn

Important example: C = closed convex cone K with polar K ∗

v ∈ NK (x) ⇐⇒ x ∈ K , v ∈ K ∗, x·v = 0 ⇐⇒ x ∈ NK∗(v)

NK∗ = N−1
K



Application to First-Order Optimality

Generalization of Fermat’s rule:

local minimum of f at x̄ =⇒ 0 ∈ ∂̂f (x̄) =⇒ 0 ∈ ∂f (x̄)

Illustration: minimizing f0(x) over x ∈ C for a C1 function f0
equivalent to minimizing f = f0 + δC over IRn

Rule of subdifferential calculus for sums f = f1 + f2

Suppose at x̄ that ̸ ∃ nonzero v ∈ ∂∞f1(x̄) with −v ∈ ∂∞f2(x̄)
(constraint qual.). Then ∂f (x̄) ⊂ ∂f1(x̄) + ∂f2(x̄) and more. . .

Application to the case at hand: where f = f0 + δC

∂f0(x̄) = {∇f0(x̄)}, ∂∞f0(x̄) = {0}, ∂δC (x̄) = ∂∞δC (x̄) = NC (x̄)

=⇒ ∂f (x̄) ⊂ {∇f0(x̄)}+ NC (x̄), so that

0 ∈ ∂f (x̄) =⇒ −∇f0(x̄) ∈ NC (x̄) as a necessary condition



Bringing in Lagrange Multipliers

Example: building on the condition −∇f0(x̄) ∈ NC (x̄) when

x̄ ∈ C =
{
x ∈ IRn

∣∣ (f1(x), . . . , fm(x)) ∈ D
}
, fi ∈ C1, for D = IRm

−

constraint system: f1(x) ≤ 0, . . . , fm(x) ≤ 0

aim: apply formula for NC (x̄) via ND(f1(x̄), . . . , fm(x̄))

Recall complementary slackness condition: on multipliers yi
(S) yi ≥ 0 if fi (x̄) = 0, but yi = 0 if fi (x̄) < 0
⇐⇒ y = (y1, . . . , ym) belongs to ND(f1(x̄), . . . , fm(x̄))!

Specializing the normal cone formula given earlier:
If (Q) only y = 0 satisfies (S) with

∑m
i=1 yi∇fi (x̄) = 0, then

v ∈ NC (x̄) ⇐⇒ ∃ ȳ satisfying (S) with
∑m

i=1 ȳi∇fi (x̄) = v

Resulting necessary condition – under constraint qualification (Q)

Local optimality of x̄ in minimizing of f0 over C entails

∃ ȳ satisfying (S) such that ∇f0(x̄) +
∑m

i=1 ȳi∇fi (x̄) = 0



Second-Order Conditions Linked to Local Optimality?

General context: minimizing f over IRn, 0 ∈ ∂f (x̄)
what more about f at x̄ may help to characterize a local min?

What purpose is to be served? what kind of help?
• traditional outlook: trying to eliminate as far as possible any

“false candidates” among points x̄ with 0 ∈ ∂f (x̄)
• modern outlook: identifying typical properties of a local

minimizer that promote numerical methods for finding it

after all, even finding x̄ with 0 ∈ ∂f (x̄) may require computation

Second-order variational analysis: still to be explained
• second-order subderivatives of f
• graphical derivatives of ∂f
• local monotonicity properties of ∂f



Further Study

• Details about the topic of this lecture can be learned from the
first half of Chapter 8 of Variational Analysis. It’s possible to get
into that more or less directly from Chapter 6, without studying
Chapter 7. (The basics of Chapter 7 will anyway be in Lecture 4.)

• Second-order variational analysis and its role in sufficient
conditions for local optimality is an active research subject which is
full of interesting developments, beyond those in Chapter 13. More
will be said about it in the next two lectures, but there is much
that can’t be covered.


