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Min and Argmin as “Operations”

Basic problem of optimization: minimize proper lsc f on IRn

implicit feasible set: dom f =
{
x
∣∣ f (x) <∞}

inf f = greatest lower bound to
{
f (x)

∣∣ x ∈ IRn
}

argmin f = set of x , if any, such that f (x) = inf f <∞
min f = same as inf f but indicating that argmin f ̸= ∅

Traditional existence criterion: associated with f = f0 + δC
argmin f ̸= ∅ when f0 is continuous and C is compact

too limited, doesn’t cover unbounded sets, approximations

General existence criterion — utilizing level-boundedness of f

argmin f ̸= ∅ compact if ∃ c > inf f with
{
x
∣∣ f (x) ≤ c

}
bounded

Fundamental issue: behavior of f 7→ argmin f and f 7→ min f
as “calculus” operations performed on functions f



Shortcomings of Classical Function Convergence on IRn

Convergence to f of a sequence of functions f ν , ν = 1, 2, . . .?

what conditions in approximating f by f ν ensure that
argmin f , min f , are approximated by argmin f ν , min f ν?

Pointwise convergence: traditional answer #1
f ν(x)→ f (x) at every point x ∈ IRn

Locally uniform convergence: traditional answer #2
max
x∈B
|f ν(x)− f (x)| → 0 for every bounded set B ⊂ IRn

(these are equivalent under uniform local Lipschitz continuity)

But • pointwise convergence requires dom f ν = dom f , ∀ν!
• locally uniform convergence can’t handle ∞ values at all!

what turns out to matter is whether epi f ν “converges” to epi f



Illustration of Convergence Needs

Problem approximations: in minimizing f0 over C
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f = f0 + δC replaced by f = f0 + g for some g ≈ δC
penalty functions g , barrier functions g

Bad behavior to avoid: min f ν = 0 always, but min f = 1

continuous functions converging pointwise on a compact set



Set Convergence

Outer and inner limits: of closed sets C and C ν for ν = 1, 2, . . .
C = lim supν C

ν when C consists of all x such that
∃ subsequence C νκ and xνκ ∈ C νκ with xνκ → x

C = lim infν C
ν when C consists of all x such that
for high enough ν, ∃ xν ∈ C ν with xν → x

C = limν C
ν when C = lim supν C

ν = lim infν C
ν
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Distance characterization, with dC (x) := min
{
|x ′ − x |

∣∣ x ′ ∈ C
}

C = limν C
ν ⇐⇒ dCν (x)→ dC (x) for all x



Epi-convergence of Functions on IRn

let f and f ν for ν = 1, 2, . . . be lsc proper functions on IRn

The meaning of epi-convergence of f ν to f , notation f ν→epi f
the sequence of sets E ν = epi f ν converges to E = epi f

Characterization in limits of function values

f ν epi-converges to f ⇐⇒ at all points x ,
• lim infν f

ν(xν) ≥ f (x) for every sequence xν → x ,
• lim supν f

ν(xν) ≤ f (x) for some sequence xν → x

Application to min and argmin — key theorem

Assume ∃c > inf f >∞ with
{
x
∣∣ f ν(x) ≤ c

}
⊂ bounded B, ∀ν.

Then argmin f is nonempty and compact, and

min f ν → min f , lim supν [argmin f ν ] ⊂ argmin f



Some Examples of Epi-convergence

Approximation of f = f0 + δC for f0 continuous, C closed

Suppose f ν = f ν0 + δCν with f ν0 continuous. If f ν0 → f0 locally
uniformly and C ν → C , then f ν epi-converges to f

note: C ν → C ⇐⇒ δCν→epi δC

Application to duality: recall conjugacy of convex functions

f ∗(v) = supx
{
v ·x − f (x)

}
, f (x) = f ∗∗(x) = supv

{
v ·x − f ∗(v)

}
Wijsman’s Theorem: on epi-continuity of the transform f 7→ f ∗

f ν epi-converges to f ⇐⇒ f ν∗ epi-converges to f ∗

Polarity of convex cones as a special case:

K ν → K ⇐⇒ K ν∗ → K ∗ because δK∗ = δ∗K



Graphical Convergence of Mappings

Classical setting: single-valued mappings F , F ν , from IRn to IRm

pointwise convergence, locally uniform convergence
not good concepts for treating set-valued mappings M, Mν

M : IRn →→ IRm, graphically identified with a subset of IRn × IRm:

gphM =
{
(x , u)

∣∣ ∈ M(x)
}

domM =
{
x
∣∣M(x) ̸= ∅

}
, inverse: x ∈ M−1(u) ⇔ u ∈ M(x)

pointwise convergence? Mν(x)→ M(x) as sets?
locally uniform convergence? |Mν(x)−M(x)| means what?

trouble for both in particular when domMν ̸= domM

Definition of Mν→gph M

Mν converges graphically to M if gphMν converges to gphM

inner and outer limits can be useful as well



Specialization to Subgradient Mappings

Monotonicity of a set-valued mapping: M : IRn → IRn

(x1 − x0)·(v1 − v0) ≥ 0 for all (x0, v0), (x1, v1) ∈ gphM

maximal: when ̸ ∃ monotone M ′ with gphM ′ ⊃ gphM, ̸=

Poliquin’s Theorem: on monotonicity of subgradient mappings

For f proper lsc on IRn and the mapping ∂f : IRn →→ IRn,
∂f monotone ⇐⇒ ∂f max monotone ⇐⇒ f convex

Attouch’s Theorem: on convergence of subgradient mappings

For proper lsc convex functions f and f ν on IRn,

f ν→epi f ⇐⇒ ∂f ν→gph ∂f and ∃ xν→ x with f ν(xν)→ f (x) <∞



Graphical Differentiation of Mappings

Aim: develop derivatives of set-valued mappings via variational
geometry of graphs, then apply that to subgradient mappings

consider M : IRn → IRd and (x̄ , ū) ∈ gphM, closed in IRn × IRd

Graphical derivative mapping: DM(x̄ | ū) : IRn →→ IRd

graph of DM(x̄ | ū) := tangent cone to gphM at (x̄ , ū)

Expression through difference quotient mappings

∆τM(x̄ | ū) : IRn →→ IRd , ∆τM(x̄ | ū)(w) = 1
τ

[
M(x̄ + τw)− ū]

gphDM(x̄ | ū) = lim sup
τ ↘ 0

[
gph∆τM(x̄ , ū)

]
Proto-differentiability: the case of “lim,” not just “limsup”



Second-Order Variational Analysis?

Recall the classical framework: for a function f : IRn → IR

• ∇f (x) = v ∈ IRn with f (x + w) = f (x) = v ·w + o(|w |)
• ∇2f (x) = H ∈ IRn×n with ∇f (x +w) = ∇f (x)+H·w + o(|w |)
• then also f (x +w) = f (x)+∇f (x)·w + 1

2w ·∇2f (x)w +o(|w |2)

Connection with directional derivatives:

∇f (x)·w = lim
τ ↘ 0

[f (x + τw)− f (x)]/τ

1
2w ·∇2f (x)w = lim

τ ↘ 0
[f (x + τw)− f (x)− τw ·∇f (x)]/τ2

Challenges of generalization to a function f : IRn → IR

• single-valued mapping ∇f replaced by set-valued mapping ∂f

• articulation of directional derivatives in ∞-valued context



Generalized Second Derivatives Using Epi-convergence

let f be proper lsc on IRn and let (x̄ , v̄) ∈ gph ∂f
Second-order difference quotients:

1
2∆

2
τ f (x̄ | v̄)(w) = [f (x̄ + τw)− f (x̄)− v̄ ·τw ]/τ2 for τ > 0

∂
[1
2∆

2
τ f (x̄ | v̄)

]
= ∆τ [∂f ](x̄ | v̄)

Second-order epi-derivatives:
1
2d

2f (x̄ | v̄)(w) = lim inf
w ′→w ,τ ↘ 0

1
2∆

2
τ f (x̄ | v̄)(w ′)

epi
[1
2d

2f (x̄ | v̄)
]
= lim sup

τ ↘ 0
epi

[1
2∆

2
τ f (x̄ | v̄)

]
Twice epi-differentiability: when the “limsup” is ‘lim”

Connection with graphical derivatives of ∂f for convex f

f twice epi-differentiable ⇐⇒ ∂f proto-differentiable, and then

D[∂f ](x̄ | v̄) = ∂[12d
2f (x̄ | v̄)]

a consequence of Attouch’s theorem



Geometric Connection with “Curvature”

making use of the correspondence C ←→ δC

Second-order epi-derivatives of an indicator function:
although dδC (x̄) is an indicator, d2δC (x̄ | v̄) usually isn’t!

Example: C =
{
x
∣∣ g(x) ≤ 0

}
, g(x̄) = 0, ∇g(x̄) ̸= 0

for v̄ = ∇g(x̄),
d2δC (x̄ | v̄)(w) =

{
w ·∇2g(x̄)w if ∇g(x̄)·w = 0,
∞ otherwise

the curvature of C at x̄ is reflected in this

Example without curvature: C polyhedral convex, v̄ ∈ NC (x̄)

d2δC (x̄ | v̄) = δK(x̄ | v̄) for K (x̄ | v̄) =
{
w ∈ TC (x̄)

∣∣ v̄ ·w = 0
}

“critical cone”



Application to Optimality Conditions

Problem: minimize a proper lsc function f on IRn

Second-order conditions for a local minimum at x̄

necessary: 0 ∈ ∂f (x̄), d2f (x̄ |0)(w) ≥ 0 for all w ̸= 0

sufficient: 0 ∈ ∂f (x̄), d2f (x̄ |0)(w) > 0 for all w ̸= 0

⇐⇒ ∃ ε > 0 such that f (x) ≥ f (x̄) + ε|x − x̄ |2 for x near x̄

Follow-up: calculus rules for determining the second-order
epi-derivatives of various functions f from their structure

Additional theory: “parabolic” derivatives, in a kind of duality

But: this isn’t the only approach in variational analysis
to second-order sufficient conditions for a local minimum

Recent developments: using “augmented Lagrangian functions”
a primal-dual saddle point approach aimed at numerical methods



Further Study

• Set convergence is covered in Chapter 4 of Variational
Analysis, and its extension to epi-convergence is in Chapter 7.
Graphical convergence of set-valued mappings is in Chapter 5.

• The special results on convex functions and their subgradient
mappings come later in Variational Analysis. Wijsman’s theorem is
in Chapter 11. The theorems of Poliquin and Attouch are covered
as part of the theory of monotone mappings in Chapter 12.

• The second-order theory at the end of this lecture draws on
Chapter 13 of Variational Analysis. Parabolic derivatives and
connections with second-order tangent cones are there as well.

• The Lagrangian approach to second-order optimality is more
recent. For that, see my article #256 as a start.

website: sites.math.washington.edu/∼rtr/mypage.html


