2019/06/20-2019/07/20
多复变函数理论为复几何/代数几何提供了有力的研究工具,复几何/代数几何为多复变提供了丰富的问题。“多复变与复几何研讨班”将围绕多复变函数理论与复几何的基础知识及其近期研究热点两个方面进行。对于基础知识部分,将围绕以下几个专题讲授。对于研究部分,将通过报告论文进行。基础知识部分内容的难度适合相关背景的硕士研究生。
基础知识:
1. Positive currents and Lelong numbers.
2. L^2 estimates, Ohsawa–Takegoshi Theorem, Skoda’s Theorem.
3. Optimal L^2 extension.
4. Strong openness.
参考书:
Bo Berndtsson: 1. L2-methods for the ∂ ̄-equation (Chapters 1, 2)
2. An Introduction to things ∂ ̄ (Chapters 4,5, 6)
研究内容:
1. J.-P. Demailly, Th. Peternell, and M. Schneider, "Pseudo-effective line bundles on compact Kähler manifolds. " Internat. J. Math. 12 (2001), no. 6, 689–741.
2. Păun, Mihai, and Shigeharu Takayama. "Positivity of twisted relative pluricanonical bundles and their direct images." Journal of Algebraic Geometry 27.2 (2018): 211-272.
3. Deng, Fusheng, et al. "New characterizations of plurisubharmonic functions and positivity of direct image sheaves." arXiv:1809.10371 (2018).
4. Guan, Qi'an, and Xiangyu Zhou. "A proof of Demailly's strong openness conjecture." Annals of Mathematics (2015): 605-616.
5. Guan, Qi'an, and Xiangyu Zhou. "A solution of an L 2 extension problem with an optimal estimate and applications." Annals of Mathematics (2015): 1139-1208.
6. Cao, Junyan, and Mihai Păun. "Kodaira dimension of algebraic fiber spaces over abelian varieties." Inventiones mathematicae 207.1 (2017): 345-387.
课程安排:
2019年6月20 – 7月20日
周一到周五,上午:9:00-10:00,10:30-11:30;下午:2:00-3:00,3:30-4:30.